Effect of Microchannel Depth on Subcooled Flow Boiling Instability and Heat Transfer

Document Type : Regular Article

Authors

Department of Mechanical Engineering, Sardar Vallabhbhai National Institute of Technology Surat, India

10.47176/jafm.18.3.2867

Abstract

Microchannel heat sinks (MCHS) are capable of removing exceptionally high heat fluxes through liquid-to-vapor phase transition, making them suitable for various applications, including the thermal management of high-power microelectronics. However, their commercial applicability is hindered by the flow boiling instability associated with chocking of the micro-passage as the vapor bubbles grow. The present study addresses the research gap in literature pertaining to the impact of microchannel depth on flow boiling instability in terms of amplitude of heated surface temperature and pressure drop oscillations, and their influence on heat transfer performance. Experiments are conducted using dielectric water boiling in multiple parallel microchannels with mass fluxes of 220 and 320 kg/m²s and wall heat fluxes ranging from 25 kW/m² to 338 kW/m². Two different MCHS, fabricated from oxygen-free copper substrate, were examined, each comprising 44 parallel microchannels with nominal depths of 500 µm and 1000 µm, and a consistent nominal width of 200 µm. Heat transfer coefficients were measured using an array of embedded T-type thermocouples on the substrate to measure temperature gradients. The findings reveal that increasing the microchannel depth results to a significant increase in the amplitude of wall temperature fluctuations under fixed wall heat flux conditions, which in turn diminishes heat transfer performance. Additionally, the study demonstrates a notable dependence of pressure drop on coolant flow and both microchannel sizes. This research provides new insights into optimizing MCHS design for enhanced thermal management, highlighting the critical role of microchannel depth in mitigating flow boiling instability and improving overall heat transfer efficiency.

Keywords

Main Subjects


Abdellatif, H. H., Ambrosini, W., Arcilesi, D., Bhowmik, P. K., & Sabharwall, P. (2024). Flow instabilities in boiling channels and their suppression methodologies—A review. Nuclear Engineering and Design421, 113114. https://doi.org/10.1016/j.nucengdes.2024.113114
Chen, T., & Garimella, S. V. (2006). Effects of dissolved air on subcooled flow boiling of a dielectric coolant in a microchannel heat sink. https://doi.org/10.1115/1.2351905
Feng, L. L., Cao, C. C., Zhong, K., & Jia, H. W. (2023). Investigation of flow boiling in micro-channels: heat transfer, pressure drop and evaluation of existing correlations. Journal of Applied Fluid Mechanics16(9), 1717-1728. https://doi.org/10.47176/jafm.16.09.1840
Feng, L., Zhong, K., Lei, Y., & Jia, H. (2024). Flow pattern-based heat transfer analysis of microchannel flow boiling: An experimental investigation. Case Studies in Thermal Engineering54, 104016. https://doi.org/10.1016/j.csite.2024.104016
Gao, Y., Wang, Z., Li, Y., Ma, E., & Yu, H. (2024). Flow boiling of liquid nitrogen in a horizontal macro-tube at low pressure: Part I-flow pattern, two-phase flow instability, and pressure drop. International Journal of Heat and Fluid Flow107, 109335. https://doi.org/10.1016/j.ijheatfluidflow.2024.109351
Halon, S., Krolicki, Z., Revellin, R., & Zajaczkowski, B. (2022). Heat transfer characteristics of flow boiling in a micro channel array with various inlet geometries. International Journal of Heat and Mass Transfer187, 122549. https://doi.org/10.1016/j.ijheatmasstransfer.2022.122549
Harirchian, T., & Garimella, S. V. (2008). Microchannel size effects on local flow boiling heat transfer to a dielectric fluid. International Journal of Heat and Mass Transfer51(15-16), 3724-3735. https://doi.org/10.1016/j.ijheatmasstransfer.2008.03.013
Hedau, G., Raj, R., & Saha, S. K. (2022). Complete suppression of flow boing instability in microchannel heat sinks using a combination of inlet restrictor and flexible dampener. International Journal of Heat and Mass Transfer182, 121937. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121937
Jiang, L., Wong, M., & Zohar, Y. (2001). Forced convection boiling in a microchannel heat sink. Journal of Microelectromechanical systems10(1), 80-87. https://doi.org/10.1109/84.911095
Kandlikar, S. G. (2004). Heat transfer mechanisms during flow boiling in microchannels. Journal of Heat Transfer, 126(1), 8-16. https://doi.org/10.1115/1.1643090
Kays, W. M., & London, A. L. (1984). Compact heat exchangers. https://www.osti.gov/biblio/6132549
Kokate, R., & Park, C. (2024). Experimental analysis of subcooled flow boiling in a microchannel evaporator of a pumped two-phase loop. Applied Thermal Engineering, 123154. https://doi.org/10.1016/j.applthermaleng.2024.123154
Li, C., Fang, X., & Dai, Q. (2023). An experimental investigation of flow boiling instability of R245fa in a horizontal tube. Physics of Fluids35(8). https://doi.org/10.1063/5.0163923
Liu, D., Lee, P. S., & Garimella, S. V. (2005). Prediction of the onset of nucleate boiling in microchannel flow. International Journal of Heat and Mass Transfer48(25-26), 5134-5149. https://doi.org/10.1016/j.ijheatmasstransfer.2005.07.021
Markal, B., Aydin, O., & Avci, M. (2016). Effect of aspect ratio on saturated flow boiling in microchannels. International Journal of Heat and Mass Transfer93, 130-143. https://doi.org/10.1016/j.ijheatmasstransfer.2015.10.024
Mehta, H. B., & Banerjee, J. (2014). Empirical Modeling and Experimental Investigations on Isothermal Air-Water Two-Phase Flow through Horizontal Circular Minichannel. Journal of Applied Fluid Mechanics7(2), 227-237. https://doi.org/10.36884/jafm.7.02.19381
Priy, A., Ahmad, I., Khan, M. K., & Pathak, M. (2024). Bubble interaction and heat transfer characteristics of microchannel flow boiling with single and multiple cavities. Journal of Thermal Science and Engineering Applications16(6), 061010. https://doi.org/10.1115/1.4065187
Raj, S., Pathak, M., & Khan, M. K. (2020). Flow boiling characteristics in different configurations of stepped microchannels. Experimental Thermal and Fluid Science, 119, 110217. https://doi.org/10.1016/j.expthermflusci.2020.110217
Ramesh, B., & Gedupudi, S. (2019). On the prediction of pressure drop in subcooled flow boiling of water. Applied Thermal Engineering155, 386-396. https://doi.org/10.1016/j.applthermaleng.2019.03.158
Saitoh, S., Daiguji, H., & Hihara, E. (2005). Effect of tube diameter on boiling heat transfer of R-134a in horizontal small-diameter tubes. International Journal of Heat and Mass Transfer48(23-24), 4973-4984. https://doi.org/10.1016/j.ijrefrig.2017.02.012
Shah, N., Mehta, H. B., & Banerjee, J. (2024). Experimental investigations on a novel instability suppression mechanism for subcooled flow boiling in microchannel heat sink. Applied Thermal Engineering239, 122006. https://doi.org/10.1016/j.applthermaleng.2023.122006
Singh, S. G., Kulkarni, A., Duttagupta, S. P., Puranik, B. P., & Agrawal, A. (2008). Impact of aspect ratio on flow boiling of water in rectangular microchannels. Experimental Thermal and Fluid Science33(1), 153-160. https://doi.org/10.1016/j.expthermflusci.2008.07.014
Soupremanien, U., Le Person, S., Favre-Marinet, M., & Bultel, Y. (2011). Influence of the aspect ratio on boiling flows in rectangular mini-channels. Experimental Thermal and Fluid Science35(5), 797-809. https://doi.org/10.1016/j.expthermflusci.2010.06.014
Sun, Y., Huang, A., Lu, J., Jiang, Y., & Wang, C. (2024). Influence of the thermophysical properties of working liquids on heat transfer performance during flow boiling in microchannels. International Journal of Multiphase Flow, 104856. https://doi.org/10.1016/j.ijmultiphaseflow.2024.104856
Tuckerman, D. B., & Pease, R. F. W. (1981). High-performance heat sinking for VLSI. IEEE Electron Device Letters2(5), 126-129. https://doi.org/10.1109/EDL.1981.25367
Wang, H., Wu, S., Dai, H., Liu, X., & Zhang, C. )2023(. Lattice Boltzmann investigation of flow boiling in a microchannel. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science237(11), 2507-2516. https://doi.org/10.1177/0954406222108914
Wang, Y., & Sefiane, K. (2012). Effects of heat flux, vapour quality, channel hydraulic diameter on flow boiling heat transfer in variable aspect ratio micro-channels using transparent heating. International Journal of Heat and Mass Transfer55(9-10), 2235-2243. https://doi.org/10.1016/j.ijheatmasstransfer.2012.01.044
Zhao, Q., Qiu, J., Zhou, J., Lu, M., Li, Q., & Chen, X. (2021). Visualization study of flow boiling characteristics in open microchannels with different wettability. International Journal of Heat and Mass Transfer180, 121808. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121808