Abbas, T., Kavrakov, I., & Morgenthal, G. (2017). Methods for flutter stability analysis of long-span bridges: a review
. Proceedings of the Institution of Civil Engineers-Bridge Engineering, 271-310. Thomas Telford Ltd.
https://doi.org/10.1680/jbren.15.00039
Baetke, F., Warner. H., & Wengle, H. (1990). Numerical simulation of turbulent flow over surface-mounted obstacles with sharp edges and corners.
Journal of Wind Engineering and Industrial Aerodynamics,
35, 129-47.
https://doi.org/10.1016/0167-6105(90)90193-g
Bombardieri, R., Cavallaro, R., Sáez de Teresa, J. L., & Karpel, M. (2019).
Nonlinear aeroelasticity: a cfd-based adaptive methodology for flutter prediction. AIAA Scitech 2019 Forum (p. 1866).
https://doi.org/10.2514/6.2019-1866
Brownjohn, J. M. W., & Bogunovic, J. (2001). Strategies for aeroelastic parameter identification from bridge deck free vibration data.
Journal of Wind Engineering and Industrial Aerodynamics,
89, 1113-36.
https://doi.org/10.1016/s0167-6105(01)00091-5
Bruno, L., Khris, S, & Marcillat, J. (2001). Numerical simulation of the effect of section details and partial streamlining on the aerodynamics of bridge decks.
Wind and Structures,
4, 315-32.
https://doi.org/10.12989/was.2001.4.4.315
Brusiani, F., Miranda, S. D., Patruno, L., Ubertini, F., & Vaona, P. (2013). On the evaluation of bridge deck flutter derivatives using RANS turbulence models.
Journal of Wind Engineering Industrial Aerodynamics,
119, 39-47.
https://doi.org/10.1016/j.jweia.2013.05.002
Cao, B., & Sarkar, P. (2010, May, 23-27).
Identification of rational functions by forced vibration method for time-domain analysis of flexible structures. Proceedings: The Fifth International Symposium on Computational Wind Engineering, Chapel Hill.
https://doi.org/10.1016/j.engstruct.2012.05.003
De Miranda, S., Patruno, L., Ricci, M., & Ubertini, F. (2015). Numerical study of a twin box bridge deck with increasing gap ratio by using RANS and LES approaches.
Engineering Structures,
99, 546-58.
https://doi.org/10.1016/j.engstruct.2015.05.017
Jiang, L., Mingjun, D., Haomiao, S., & Yu, R. (2018). Numerical Modeling of flow over a rectangular broad-crested weir with a sloped upstream face.
Water,
10, 1663.
https://doi.org/10.3390/w10111663
Körpe, D. S., Kanat, Ö. Ö., & Oktay, T. (2019). The Effects of initial y plus: numerical analysis of 3D NACA 4412 wing using γ-Reθ SST Turbulence model.
Avrupa Bilim ve Teknoloji Dergisi, 692-702.
https://doi.org/10.31590/ejosat.631135
Lin, S., Qi, W., Nikolaos, N., & Haili, L. (2019). Effects of oscillation amplitude on motion-induced forces for 5: 1 rectangular cylinders.
Journal of Wind Engineering and Industrial Aerodynamics,
186, 68–83.
https://doi.org/10.1016/j.jweia.2019.01.002
Mannini, C., & Bartoli, G. (2008).
Investigation on the dependence of bridge deck flutter derivatives on steady angle of attack. Proc., BBAA VI Int. Colloquium on Bluff Bodies Aerodynamics and Applications. Citeseer.
https://api.semanticscholar.org/CorpusID:221712605
Matsumoto, M., Yoshizumi, F., Yabutani, T., Abe, K., & Nakajima, N. (1999). Flutter stabilization and heaving-branch flutter.
Journal of Wind Engineering and Industrial Aerodynamics, 83, 289-99.
https://doi.org/10.1016/s0167-6105(99)00079-3
Montoya, M. C., Nieto, F., Hernández, F., Kusano, I., Álvarez, A. J. & Jurado, J. Á. (2018). CFD-based aeroelastic characterization of streamlined bridge deck cross-sections subject to shape modifications using surrogate models.
Journal of Wind Engineering and Industrial Aerodynamics,
177, 405-28.
https://doi.org/10.1016/j.jweia.2018.01.014
Neuhaus, C., Höffer, R., & Roesler, S. (2009).
Identification of 18 Flutter derivatives by forced vibration tests: A New experimental rig. Identification of 18 Flutter Derivatives by Forced Vibration Tests, 1000-04.
https://api.semanticscholar.org/CorpusID:124841633
Noda, M., Utsunomiya, H., Nagao, F., Kanda, M., & Shiraishi, N. (2003). Effects of oscillation amplitude on aerodynamic derivatives.
Journal of Wind Engineering Industrial Aerodynamics,
91, 101-11.
https://doi.org/10.1016/s0167-6105(02)00338-0
Poulsen, N. K., Damsgaard, A., & Reinhold, T. A. (1992). Determination of flutter derivatives for the Great Belt Bridge.
Journal of Wind Engineering and Industrial Aerodynamics,
41, 153–64.
https://doi.org/10.1016/0167-6105(92)90403-w
Siedziako, B., Øiseth, O., & Rønnquist, A. (2017). An enhanced forced vibration rig for wind tunnel testing of bridge deck section models in arbitrary motion.
Journal of Wind Engineering and Industrial Aerodynamics,
164, 152-63.
https://doi.org/10.1016/j.jweia.2017.02.011
Starossek, U., Aslan, H., & Thiesemann, L. (2009). Experimental and numerical identification of flutter derivatives for nine bridge deck sections.
Wind and Structures,
12, 519.
https://doi.org/10.12989/was.2009.12.6.519
Tang, H., Li, Y., & Shum, K. M. (2018). Flutter performance of long-span suspension bridges under non-uniform inflow.
Advances in structural Engineering,
21, 201-13.
https://doi.org/10.1177/1369433217713926
Tang, H., Shum, K. M., & Li, Y. (2019). Investigation of flutter performance of a twin-box bridge girder at large angles of attack.
Journal of Wind Engineering Industrial Aerodynamics,
186, 192-203.
https://doi.org/10.1016/j.jweia.2019.01.010
Wu, B., Wang, Q., Liao, H., Li, Y., & Li, M. (2020). Flutter derivatives of a flat plate section and analysis of flutter instability at various wind angles of attack.
Journal of Wind Engineering and Industrial Aerodynamics,
196, 104046.
https://doi.org/10.1016/j.jweia.2019.104046
Xu, F., & Zhang, Z. (2017). Free vibration numerical simulation technique for extracting flutter derivatives of bridge decks.
Journal of Wind Engineering and Industrial Aerodynamics,
170, 226–37.
https://doi.org/10.1016/j.jweia.2017.08.018
Zhang, M., Xu, F., & Han, Y. (2020a). Assessment of wind-induced nonlinear post-critical performance of bridge decks.
Journal of Wind Engineering and Industrial Aerodynamics,
203, 104251.
https://doi.org/10.1016/j.jweia.2020.104251
Zhang, M., Xu, F., Zhang, Z., & Ying, X. (2019). Energy budget analysis and engineering modeling of post-flutter limit cycle oscillation of a bridge deck.
Journal of Wind Engineering and Industrial Aerodynamics,
188, 410-20.
https://doi.org/10.1016/j.jweia.2019.03.010
Zhao, L, Wu, F, & Pan, J. (2021). Wind field characteristics and wind-induced buffeting response of a long-span bridge during the landing of a strong typhoon Journal of Aerodynamics, 39 , 86-97.
https://doi.org/10.7638/kqdlxxb-2021.0066
Zheng, Q., & Alam, M. M. (2017). Intrinsic features of flow past three square prisms in side-by-side arrangement.
Journal of Fluid Mechanics, 826, 996 – 1033.
https://doi.org/10.1017/jfm.2017.378
Zhou, Z., & Ma, R. (2010). Numerical simulation study of the Reynolds number effect on two bridge decks based on the deterministic vortex method.
Wind and Structures,
13, 347-62.
https://doi.org/10.12989/was.2010.13.4.347